2009 Campus Technology Innovators: High-Performance Computing

2009 Campus Technology Innovators

THE PURDUE DIAGRID TEAM, left to right: Andrew Howard, Phillip Cheeseman, John Campbell, David Braun, Preston Smith, Carol Song.

HIGH-PERFORMANCE COMPUTING
Innovator: Purdue University

At Purdue University (IN), the demand for computing by science and engineering faculty has increased at a far faster rate than the budget for new computing hardware. Meanwhile, most computers, even multimillion-dollar supercomputers, are only in use about half of the time. By capturing these unused cycles, DiaGrid provides millions of hours of computation that would otherwise be wasted, without additional technology or facilities purchases. (DiaGrid began in 2004 as a Purdue West Lafayette campus system known as BoilerGrid, and was renamed in 2008 with the addition of several other campuses, including Indiana University, the University of Notre Dame (IN), Indiana State University, Purdue's Calumet and North Central regional campuses, and Indiana University- Purdue University Fort Wayne.)

The idea of reclaiming wasted computing cycles by putting idle machines to work in a distributed computing grid is not new. The notion was even popularized by SETI@home, which recruited ordinary home computers to join in the hunt for extraterrestrials while their owners slept. But no other grid project has ever before attempted to pool the wide variety of hardware systems represented in DiaGrid. Among the resources tapped: computers in campus labs, offices, server rooms, and high-performance research computing clusters, running a variety of operating systems. Now at more than 24,000 processors (and growing) across multiple campuses, the sheer size of the pool also sets DiaGrid apart. It provided more than 16 million hours of computation in 2008.

DiaGrid is based on Condor, free open source software developed at the University of Wisconsin that supports high-throughput computing on large collections of distributed, cross-platform computing resources. It also relies on Cycle Computing's CycleServer tool for many of the administrative aspects of managing and using a Condor pool, as well as Batch System Pro from PBS GridWorks for scheduling jobs. And DiaGrid takes advantage of high-speed connectivity via I-Light, the fiber-optic state network connecting Indiana campuses, along with national research networks such as Internet2 and National LambdaRail.

DiaGrid has been used at Purdue in a variety of demanding research projects, such as imaging the structure of viruses at near-atomic resolutions; simulating the Oort Cloud in an effort to understand the early stages of the solar system's formation; projecting the reliability of Indiana's electrical supply; and modeling the spread of water pollutants. Other applications have included a system to help create a virtual version of a pharmacy clean room for training student pharmacists, and a fly-through animation of a proposed satellite city that could serve as a refuge for Istanbul, Turkey, in the event of a catastrophic earthquake. DiaGrid provides computational resources to researchers on both the Open Science Grid and the TeraGrid.

Currently the centralized equivalent of DiaGrid would be a cluster supercomputer costing more than $3 million, taking up 2,000 square feet of floor space, and ranking among the top 100 supercomputers worldwide. And Dia- Grid provides its compute power entirely from existing computing resources that would otherwise be wasted. Project lead John Campbell, associate vice president for information technology at Purdue, has DiaGrid's next foreseeable goal in sight: to add more partners and reach a pool size of 100,000 processors in 2009.

Gerry McCartney, Purdue's vice president for information technology and chief information officer, says DiaGrid will continue to build and expand. "We named this national computing grid DiaGrid after the type of girder arrangement used in modern skyscrapers," McCartney says. "It's an apt metaphor. We're building a computing infrastructure that scientists and engineers can use to make monumental discoveries. DiaGrid is a new, national resource for research. Experiments will be conducted using this computing grid that could not have been done before."

The centralized equivalent of DiaGrid would be a $3 million supercomputer and take up 2,000 square feet of floor space.
Vendor & Product Details

About the Authors

Mary Grush is Editor and Conference Program Director, Campus Technology.

Matt Villano is senior contributing editor of this publication.

Featured

  • glowing brain, connected circuits, and abstract representations of a book and graduation cap on a light gray gradient background

    Snowflake Launches Program to Upskill 100,000 People in Data and AI

    Cloud data platform Snowflake is embarking on an effort to train and certify more than 100,000 users on its AI Data Cloud by 2027. The One Million Minds + One Platform program will provide Snowflake-delivered courses, training materials, and free access to Snowflake software, at no cost to learners.

  • two abstract humanoid figures made of interconnected lines and polygons, glowing slightly against a dark gradient background

    Microsoft Introduces Copilot Chat Agents for Education

    Microsoft recently announced Microsoft 365 Copilot Chat, a new pay-as-you-go offering that adds AI agents to its existing free chat tool for Microsoft 365 education customers.

  • hand touching glowing connected dots

    Registration Now Open for Tech Tactics in Education: Thriving in the Age of AI

    Tech Tactics in Education has officially opened registration for its May 7 virtual conference on "Thriving in the Age of AI." The annual event, brought to you by the producers of Campus Technology and THE Journal, offers hands-on learning and interactive discussions on the most critical technology issues and practices across K–12 and higher education.

  • Three cubes of noticeably increasing sizes are arranged in a straight row on a subtle abstract background

    A Sense of Scale

    Gardner Campbell explores the notion of scale in education and shares some of his own experience "playing with scale" — scaling up and/or scaling down — in an English course at VCU.