Funding, Grants & Awards | News

Five Schools To Probe Science of Timekeeping for Internet of Things

If two self-driving cars approach an intersection at the same time, the one on the right will still have the right of way, just like it is now on roads in the United States. But what happens if their clocks aren't synched quite right and one car mistakenly senses that it has arrived at the intersection incrementally sooner than the other? No doubt, smart cars will use sensors to avoid a collision, but the problem is an important one. To address this and similar challenges, a new cross-institutional research project will undertake a major study of timekeeping in "cyber-physical systems" (CPS), better known as the "Internet of Things."

The Roseline Project, as it's called, is receiving a $4 million, five-year award from the National Science Foundation. While the initiative will be based at the University of California Los Angeles (UCLA) School of Engineering and Applied Science, scientists from UC San Diego and UC Santa Barbara as well as Carnegie Mellon University and the University of Utah will also join.

The goal will be "to improve the accuracy, efficiency, robustness and security with which computers maintain knowledge of time and synchronize it with other networked devices," according to new coverage on the NSF Web site.

Smart cars aren't the only application where the research could have an impact. The scientists point to applications in aeronautics, which use autopilot systems; advanced robotics and medical devices; energy efficient buildings; and multiple industrial areas in which cyber-physical systems require exact knowledge of time to infer location, control communication and coordinate activities. The specific output could include new clocking technologies, synchronization protocols, operating system methods and control and sensing algorithms.

"Through the Roseline project, we will drive cyber-physical systems research with a deeper understanding of time and its trade-offs, and advance the state-of-the-art in clocking circuits and platform architectures," said Mani Srivastava, a professor of electrical engineering at UCLA and the principal investigator.

Added Farnam Jahanian, head of NSF's Directorate for Computer and Information Science and Engineering, "As the 'Internet of Things' becomes more pervasive in our lives, precise timing will be critical for these systems to be more responsive, reliable and efficient."

About the Author

Dian Schaffhauser is a writer who covers technology and business for a number of publications. Contact her at dian@dischaffhauser.com.

comments powered by Disqus