Five Schools To Probe Science of Timekeeping for Internet of Things

If two self-driving cars approach an intersection at the same time, the one on the right will still have the right of way, just like it is now on roads in the United States. But what happens if their clocks aren't synched quite right and one car mistakenly senses that it has arrived at the intersection incrementally sooner than the other? No doubt, smart cars will use sensors to avoid a collision, but the problem is an important one. To address this and similar challenges, a new cross-institutional research project will undertake a major study of timekeeping in "cyber-physical systems" (CPS), better known as the "Internet of Things."

The Roseline Project, as it's called, is receiving a $4 million, five-year award from the National Science Foundation. While the initiative will be based at the University of California Los Angeles (UCLA) School of Engineering and Applied Science, scientists from UC San Diego and UC Santa Barbara as well as Carnegie Mellon University and the University of Utah will also join.

The goal will be "to improve the accuracy, efficiency, robustness and security with which computers maintain knowledge of time and synchronize it with other networked devices," according to new coverage on the NSF Web site.

Smart cars aren't the only application where the research could have an impact. The scientists point to applications in aeronautics, which use autopilot systems; advanced robotics and medical devices; energy efficient buildings; and multiple industrial areas in which cyber-physical systems require exact knowledge of time to infer location, control communication and coordinate activities. The specific output could include new clocking technologies, synchronization protocols, operating system methods and control and sensing algorithms.

"Through the Roseline project, we will drive cyber-physical systems research with a deeper understanding of time and its trade-offs, and advance the state-of-the-art in clocking circuits and platform architectures," said Mani Srivastava, a professor of electrical engineering at UCLA and the principal investigator.

Added Farnam Jahanian, head of NSF's Directorate for Computer and Information Science and Engineering, "As the 'Internet of Things' becomes more pervasive in our lives, precise timing will be critical for these systems to be more responsive, reliable and efficient."

About the Author

Dian Schaffhauser is a former senior contributing editor for 1105 Media's education publications THE Journal, Campus Technology and Spaces4Learning.

Featured

  • SXSW EDU

    Explore the Future of AI in Higher Ed at SXSW EDU 2025

    This March 3-6 in Austin, TX, the SXSW EDU Conference & Festival celebrates its 15th year of exploring education's most critical issues and providing a forum for creativity, innovation, and expression.

  • man working on laptop outdoors

    Digital Leadership Must-Haves for 2025: A CDO's Picks

    Now that he's more than a year and a half into his chief digital officer role at NJIT, we've asked Ed Wozencroft to reflect on his areas of concentration: What work must digital leaders "own" in 2025?

  • From Fire TV to Signage Stick: University of Utah's Digital Signage Evolution

    Jake Sorensen, who oversees sponsorship and advertising and Student Media in Auxiliary Business Development at the University of Utah, has navigated the digital signage landscape for nearly 15 years. He was managing hundreds of devices on campus that were incompatible with digital signage requirements and needed a solution that was reliable and lowered labor costs. The Amazon Signage Stick, specifically engineered for digital signage applications, gave him the stability and design functionality the University of Utah needed, along with the assurance of long-term support.

  • digital artwork of glowing, interconnected neural-like shapes on a gradient background of deep blue and vibrant purple

    Google Announces Upgrade to Flagship Gemini AI Platform, Enhancing Multimodal Capabilities

    Google has launched Gemini 2.0, designed to empower enterprise users and developers with advanced multimodal capabilities and enhanced performance.