Researchers Provide Breakdown of Generative AI Misuse

In an effort to clarify the potential risks of GenAI and provide "a concrete understanding of how GenAI models are specifically exploited or abused in practice, including the tactics employed to inflict harm," a group of researchers from Google DeepMind, Jigsaw, and Google.org recently published a paper entitled, "Generative AI Misuse: A Taxonomy of Tactics and Insights from Real-World Data."

The authors of the paper, Nahema Marchal, Rachel Xu, Rasmi Elasmar, Iason Gabriel, Beth Goldberg, and William Isaac, emphasized that, as GenAI capabilities continue to advance, understanding the specific ways in which these tools are exploited is critical for developing effective safeguards. Their "taxonomy of GenAI misuse tactics" is meant to provide a framework for identifying and addressing the potential harms associated with these technologies, they wrote, ultimately aiming to ensure their responsible and ethical use.

The researchers based their study on the qualitative analysis of approximately 200 incidents reported between January 2023 and March 2024. That analysis revealed key patterns and motivations behind the misuse of GenAI, including:

  • Manipulation of human likeness. The most prevalent tactics involve the manipulation of human likeness, such as impersonation, "sockpuppeting," and "non-consensual intimate imagery."
  • Low-tech exploitation. Most misuse cases do not involve sophisticated technological attacks, but rather exploit easily accessible GenAI capabilities requiring minimal technical expertise.
  • Emergence of new forms of misuse. The availability and accessibility of GenAI tools have introduced new forms of misuse that, although not overtly malicious or policy-violative, have concerning ethical implications, such as blurring the lines between authenticity and deception in political outreach and self-promotion.

The study also identified two categories of misuse tactics:

Exploitation of GenAI Capabilities

  • Impersonation: Creating AI-generated audio or video to mimic real people.
  • Appropriated likeness: Using or altering a person's likeness without consent.
  • Sockpuppeting: Creating synthetic online personas.
  • NCII: Generating explicit content without consent.
  • Falsification: Fabricating evidence such as reports or documents.
  • IP infringement: Using someone’s intellectual property without permission.
  • Counterfeit: Producing items that imitate original works and pass as real.
  • Scaling and amplification: Automating and amplifying content distribution.
  • Targeting & personalization: Refining outputs for targeted attacks.

Compromise of GenAI Systems

  • Adversarial inputs: Modifying inputs to cause a model to malfunction.
  • Prompt injections: Manipulating text instructions to produce harmful outputs.
  • Jailbreaking: Bypassing model restrictions and safety filters.
  • Model diversion: Repurposing models for unintended uses.
  • Steganography: Hiding messages within model outputs.
  • Data poisoning: Corrupting training datasets to introduce vulnerabilities.
  • Privacy compromise: Revealing sensitive information from training data.
  • Data exfiltration: Illicitly obtaining training data.
  • Model extraction: Stealing model architecture and parameters.

The paper provides insights for policymakers, trust and safety teams, and researchers to help them develop strategies for AI governance and mitigate real-world harms, the authors wrote. In order to protect against the diverse and growing threats posed by GenAI, they called for better technical safeguards, non-technical user-facing interventions, and ongoing monitoring of the evolving misuse landscape.

About the Author

John K. Waters is the editor in chief of a number of Converge360.com sites, with a focus on high-end development, AI and future tech. He's been writing about cutting-edge technologies and culture of Silicon Valley for more than two decades, and he's written more than a dozen books. He also co-scripted the documentary film Silicon Valley: A 100 Year Renaissance, which aired on PBS.  He can be reached at [email protected].

Featured

  • rising AI-driven growth contrasted with a declining financial graph

    Report: Falling Behind in AI Adoption Comes at Substantial Cost

    A recent report from Couchbase has cautioned that enterprises that do not keep pace in AI adoption face potential financial losses, calculating an average annual impact of up to $87 million for organizations that fall behind.

  • stylized illustration of a desktop, laptop, tablet, and smartphone all displaying an orange AI icon

    Report: AI Shifting from Cloud to PCs

    AI is shifting from the cloud to PCs, offering enhanced productivity, security, and ROI. Key players like Intel, Microsoft (Copilot+ PCs), and Google (Gemini Nano) are driving this on-device AI trend, shaping a crucial hybrid future for IT.

  • laptop displaying a phishing email icon inside a browser window on the screen

    Phishing Campaign Targets ED Grant Portal

    Threat researchers at cybersecurity company BforeAI have identified a phishing campaign spoofing the U.S. Department of Education's G5 grant management portal.

  • college student working on a laptop, surrounded by icons representing campus support services

    National U Launches Student Support Hub for Non-Traditional Learners

    National University has launched a new student support hub designed to help online and working learners balance career, education, and family responsibilities as they pursue their education. Called "The Nest," the facility is positioned as a "co-learning" center that provides wraparound support services, work and study space, and access to child care.