Canadian Researchers Design Bendable Sensors for Next-Gen Touchscreen Devices, Wearables and More

Images Courtesy of the University of British Columbia.

Imagine folding up a tablet and putting it in your pocket or purse after using it. This may be a possibility for the next generation of touchscreen devices, wearables and other items, thanks to a flexible and stretchable touch sensor being developed at the University of British Columbia (UBC) in Canada.

A recently published paper in the journal Science Advances explained that the sensor works by using stretchable and ionically conductive hydrogel electrodes. A highly conductive gel is squeezed between layers of bendable silicone (created through a simple molding process to generate films). It projects an electric field above the sensor to detect different types of touch — even while it is bent.

“There are sensors that can detect pressure, such as the iPhone’s 3D Touch, and some that can detect a hovering finger, like Samsung’s AirView. There are also sensors that are foldable, transparent and stretchable. Our contribution is a device that combines all those functions in one compact package,” said Mirza Saquib Sarwar, a Ph.D. student in electrical and computer engineering at UBC, in a statement.

The research is part of a larger effort to create wearable devices and to create robotic skins. John Madden, a UBC professor of applied science who is supervising the research, said the sensor could be added in robotic “skins” to make human-robot interactions safer.

“Currently, machines are kept separate from humans in the workplace because of the possibility that they could injure humans. If a robot could detect our presence and be ‘soft’ enough that they don’t damage us during an interaction, we can safely exchange tools with them, they can pick up objects without damaging them, and they can safely probe their environment,” said Madden.

With the two materials being low in cost to produce, both Madden and Mizra think the prototype can be scaled up for a wide range of applications, like clothing, steering wheels, roads, etc.

The research was funded by the Natural Sciences and Engineering Research Council of Canada.

To learn more, watch the video below or visit UBC’s Department of Electrical and Computer Engineering site.

About the Author

Sri Ravipati is Web producer for THE Journal and Campus Technology. She can be reached at [email protected].

Featured

  • Hand holding a stylus over a tablet with futuristic risk management icons

    Why Universities Are Ransomware's Easy Target: Lessons from the 23% Surge

    Academic environments face heightened risk because their collaboration-driven environments are inherently open, making them more susceptible to attack, while the high-value research data they hold makes them an especially attractive target. The question is not if this data will be targeted, but whether universities can defend it swiftly enough against increasingly AI-powered threats.

  • interconnected blocks of data

    Rubrik Intros Immutable Backup for Okta Environments

    Rubrik has announced Okta Recovery, extending its identity resilience platform to Okta with immutable backups and in-place recovery, while separately detailing its integration with Okta Identity Threat Protection for automated remediation.

  • teenager’s study desk with a laptop displaying an AI symbol, surrounded by books, headphones, a notebook, and a cup of colorful pencils

    Survey: Student AI Use on the Rise

    Ninety-three percent of students across the United States have used AI at least once or twice for school-related purposes, according to the latest AI in Education report from Microsoft.

  • cybersecurity book with a shield and padlock

    NIST Proposes New Cybersecurity Guidelines for AI Systems

    The National Institute of Standards and Technology has unveiled plans to issue a new set of cybersecurity guidelines aimed at safeguarding artificial intelligence systems, citing rising concerns over risks tied to generative models, predictive analytics, and autonomous agents.