Paper Offers Framework for Reducing Algorithm Bias

algorithm

A recent paper on algorithm development provided some guidance for how to reduce the bias inherent in AI algorithms as well as the harm those biases can have on underprivileged groups. "A Harm-Reduction Framework for Algorithmic Fairness" argued that artificial intelligence and machine learning are "increasingly" being applied to decision-making and "affect the lives of individuals in ways large and small." The report was produced by the Center for Research on Equitable and Open Scholarship at MIT Libraries and Berkman Klein Center for Internet & Society at Harvard University and published in IEEE Security & Privacy.

The issue of algorithm bias cropped up recently when freshman Congresswoman Alexandria Ocasio-Cortez (D-N.Y.) told a gathering during a Martin Luther King Jr. Day event in New York City that "Algorithms are still made by human beings, and those algorithms are still pegged to basic human assumptions." During the public interview with writer Ta-Nehisi Coates, Ocasio-Cortez said, "[Algorithms are] just automated assumptions. And if you don't fix the bias, then you're automating the bias."

As two of the paper's authors explained in an opinion piece on The Hill, the standard approaches for reducing bias in algorithms "do little to address inequality." As an example, they pointed to Correctional Offender Management Profiling for Alternative Sanctions (COMPAS), a risk assessment application used by the criminal justice system to help make decisions on sentencing, bail, probation and parole. While race and ethnicity data is "intentionally excluded from COMPAS," discriminatory results still surface because the training data (such as income) used to build the model "are sourced from a criminal justice system plagued by racial disparities" and can act like proxies for race.

But rather than giving up on algorithms altogether, the authors suggested a greater understanding of the "costs and benefits" involved in adopting them. "In our paper, we argue that society has an ethical responsibility not to make vulnerable groups pay a disproportionate share of the costs resulting from our growing use of algorithms," they wrote.

This "balancing act," as they called it, necessitates a more holistic analysis that explores the impact of "four key decision points":

  • How the algorithm was designed;
  • What data was used to train the algorithm;
  • How the formula is applied to each person's data; and
  • How the result or output is used to make the decision.

Right now, the authors stated, too many algorithms are proprietary, and there's too little pressure for the designers to share how their algorithms work. That should include explaining their design choices as well as the data on the consequences of those choices and continual monitoring of how the algorithms affect various groups of people — especially vulnerable groups, they said. "We should not trust an algorithm unless it can be reviewed and audited in meaningful ways."

That level of sharing won't happen without pressure "from policymakers, consumers and the companies that purchase and use algorithmic decision-making tools," they stated.

The article explaining the paper is openly available on The Hill. The paper itself is also openly available through the Berkman Klein Center.

About the Author

Dian Schaffhauser is a former senior contributing editor for 1105 Media's education publications THE Journal, Campus Technology and Spaces4Learning.

Featured

  • row of digital padlocks

    2026 Cybersecurity Trends to Watch in Higher Education

    In an open call last month, we asked education and industry leaders for their predictions on the cybersecurity landscape for schools, districts, colleges, and universities in 2026. Here's what they told us.

  • abstract networking lines with AI text on top

    WWT, NVIDIA Introduce Framework for Secure, Scalable, Responsible AI Adoption

    Technology services provider World Wide Technology and NVIDIA have jointly developed an AI security framework dubbed AI Readiness Model for Operational Resilience (ARMOR), designed to help organizations accelerate AI adoption while maintaining security, compliance, and operational resilience.

  • Abstract speed motion blur in vibrant colors

    3 Ed Tech Shifts that Will Define 2026

    The digital learning landscape is entering a new phase defined by rapid advances in artificial intelligence, rising expectations for the student experience, and increasing pressure to demonstrate quality and accountability in online education.

  • Wireless network and connection abstract data background with wifi symbol

    Georgetown Partners with Cisco on Large WiFi 7 Rollout

    Georgetown University is working with Cisco on a multi-year network revamp that will implement WiFi 7 across the institution's classrooms, dorms, stadiums, and beyond.