The Significant Other: The Projection Screen

A tremendous amount of research can go into deciding on a projector, but the selection of a projection screen can be just as important--not in terms of capital outlay, but in terms of the impact it can have on image quality. The wrong projection screen can make images look terrible, which, in turn, can impact the way students receive and absorb information in class. But the right one enhances the contrast, brightness, and sharpness of images and can lead to less eyestrain for the viewer.

How do you determine the best screen for the classroom, lecture hall, auditorium, or meeting room? The size, the fabric, the style, the proportion, and rear versus front come into play, as do the specifications of the projector itself. Here are some considerations.

The Mechanics
Which mechanism to select is probably the easiest of the decisions. The choices: ceiling, wall-mount or portable, tensioned or not, and manual or electric.

Obviously, ceiling and wall mounting are permanent solutions for rooms in which projection is required routinely. Portable screens are in fashion for those facilities moving toward shared equipment that can be wheeled into rooms as needed. Mounted screens are far more secure and protected: They are harder to steal and less prone to damage since they aren't carted here and there. In addition, the mounted screen is usually retracted when not in use, so the fabric is protected as well. The retraction feature, (as opposed to fixed-frame in which the full screen remains on the wall), is more relevant to the classroom. Fixed-frame screens are more likely to be used in a lecture hall than a classroom, since the lecture hall screen isn't as exposed to traffic.

Some other important mechanical considerations include:

  • Tension: A screen without tension may cost less, but the design means that the screen hangs freely and is subject to movement owing to airflow in the room. A tension mechanism keeps the screen in place.
  • Retraction (electric versus manual): Electric, while more expensive, is more convenient, and it is also less hassle than trying to pull a screen to the correct angle to lock it into position.

Screen Size
An image that's too large for the space is hard on the eyes and strains the neck as the head turns from side to side to view information. Too small a screen means text is hard to read. The wrong size can also negatively impact viewing angles. So first, one must work with the projector to position it (or adjust the zoom) or provide the best sized-image for the particular audience size and seating arrangement.

Aspect ratio is another size consideration. A 4:3 proportion was for many years the standard for presentations, such as PowerPoint-based material. But 16:9 and 16:10 widescreen proportions are gaining in popularity with the increased use of high definition content. Some believe PowerPoint and other presentations will move to widescreen as well. So another consideration in choosing a projection screen is whether to buy 4:3 or a newer widescreen aspect ratio.

Color Choices
The two most common choices of screen color are white or gray. White is obviously the most common and the most versatile. Gray screens, however, can make up for a projector's shortcomings in contrast levels and can provide deeper blacks.

Screen Surface
The screen's gain is one of the basic differences between screens. The gain is how much light reflectivity a screen delivers. Screens with higher gain deliver brighter images, and they are common in classrooms where there is ambient light to combat or in locations where lights are left on. So higher gain screens are better, right? Not necessarily. High-gain screens have drawbacks. They are more susceptible to "hot-spotting," noticeable when the center of the screen appears far brighter than the edges. High-gain screens also can result in reduced viewing angles, meaning some people seated too far to the side will have trouble seeing the images. Finally, high-gain screens may affect the appearance of the colors from different viewing angles.

The gain is a measurement found in all projection screens, but the screen material will vary greatly from manufacturer to manufacturer. Some of the basic screen materials are fine for any environment where the light can be controlled. Other screen materials may be designed for areas with high ambient light or for different projection technologies, such as DLP or LCD, and some are designed to accommodate high definition resolution and even 3D. Some screen materials are fine for data, but others are designed specifically for video. Some have glass beads embedded in the material for even greater light reflection. Some screens are flame-retardant, and some you can actually clean as needed.

Rear Versus Front Projection Screens
Rear projection technology--projecting from behind through a translucent screen--is popular for a number of reasons, including the ability of rear-projection screens to address ambient light, since they tend to deliver brighter images, and the fact that lecturers using rear-projection screens needn't worry about disrupting the image while pacing.

The downside is that rear projection usually has limited viewing angles. It can be more expensive and occupies more space in the room, since the projector resides behind the screen. New short-throw projector technologies, however, have practically eliminated that space challenge, since some models can project an 80-inch image from just inches away from the screen.

Decision Time
Selecting a screen is downright tricky. Unless you want to become an expert in screen technologies, you may want to ask for recommendations. A projector manufacturer should know which screen will maximize the potential for a particular model. The AV systems integrator and the screen manufacturer will too. However you do it, do the research.

About the Author

Denise Harrison is a freelance writer and editor specializing in technology, specifically in audiovisual and presentation. She also works as a consultant for Second Life projects and is involved with nonprofits and education within the 3D realm. She can be reached here.

Featured

  • glowing brain, connected circuits, and abstract representations of a book and graduation cap on a light gray gradient background

    Snowflake Launches Program to Upskill 100,000 People in Data and AI

    Cloud data platform Snowflake is embarking on an effort to train and certify more than 100,000 users on its AI Data Cloud by 2027. The One Million Minds + One Platform program will provide Snowflake-delivered courses, training materials, and free access to Snowflake software, at no cost to learners.

  • two abstract humanoid figures made of interconnected lines and polygons, glowing slightly against a dark gradient background

    Microsoft Introduces Copilot Chat Agents for Education

    Microsoft recently announced Microsoft 365 Copilot Chat, a new pay-as-you-go offering that adds AI agents to its existing free chat tool for Microsoft 365 education customers.

  • hand touching glowing connected dots

    Registration Now Open for Tech Tactics in Education: Thriving in the Age of AI

    Tech Tactics in Education has officially opened registration for its May 7 virtual conference on "Thriving in the Age of AI." The annual event, brought to you by the producers of Campus Technology and THE Journal, offers hands-on learning and interactive discussions on the most critical technology issues and practices across K–12 and higher education.

  • Three cubes of noticeably increasing sizes are arranged in a straight row on a subtle abstract background

    A Sense of Scale

    Gardner Campbell explores the notion of scale in education and shares some of his own experience "playing with scale" — scaling up and/or scaling down — in an English course at VCU.