New Algorithm from MIT, Yale, and USC Tackles Max Flow Challenge

Researchers from MIT, Yale University, and the University of Southern California have developed what they are labeling the "fastest known algorithm" for solving the problem of "maximum flow."

The max flow problem, as it's called, refers to the process of figuring out how much capacity is available between any given starting point and any given end point. Capacity could refer to trucks on roads, water in pipes, or packets on a cable. The challenge first surfaced in 1954 in an attempt to model the behavior of Soviet railway traffic. The first algorithm to solve it came the following year. Since then numerous algorithms have surfaced to address the calculation of max flow more efficiently.

Typically, the network has been represented as a graph with a series of nodes or "vertices"; the lines between the vertices are called "edges." Each edge has a given maximum capacity, and the algorithms set out to calculate the most efficient way to use the capacity represented in the graph without exceeding the constraints.

As the network grows, however, the use of traditional algorithms may become too time-consuming to be practical. "There has recently been an explosion in the sizes of graphs being studied," explained Jonathan Kelner, an associate professor of applied mathematics at MIT and a member of MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL). "For example, if you wanted to route traffic on the Internet, study all the connections on Facebook, or analyze genomic data, you could easily end up with graphs with millions, billions or even trillions of edges."

The algorithm developed by Kelner and his four colleagues chooses to solve the max-flow problem by analyzing all potential paths at the same time. According to university coverage of the technique, the researchers viewed the graph as a collection of electrical resistors and then imagined connecting a battery to node A and a ground to node B, and allowing the current to flow through the network. "Electrical current doesn't pick just one path, it will send a little bit of current over every resistor on the network," Kelner said. "So it probes the whole graph globally, studying many paths at the same time."

This approach introduced definite efficiencies. Then the team added an additional twist. Their algorithm also identifies network routes that pose bottlenecks. "Our algorithm figures out which parts of the graph can easily route what they need to and which parts are the bottlenecks. This allows you to focus on the problem areas and the high-level structure instead of spending a lot of time making unimportant decisions, which means you can use your time a lot more efficiently," Kelner noted.

As the number of nodes increases so does the amount of running time required to solve the problem. However, the paper stated, rather than an exponential increase, the computation scales "near-linearly."

About the Author

Dian Schaffhauser is a former senior contributing editor for 1105 Media's education publications THE Journal, Campus Technology and Spaces4Learning.

Featured

  • business leader standing confidently amid interconnected gears

    Leading Through Complexity: How Online Leaders Can Drive Digital Institutional Transformation

    Leaders charged with developing and expanding online programs at their institutions are finding themselves in increasingly complex roles, but there are a few core steps institutional leaders can take to ensure success.

  • semi-transparent AI brain with circuit elements under a microscope

    Anthropic Develops AI 'Microscope' to Reveal the Hidden Mechanics of LLM Thought

    Anthropic has unveiled new research tools designed to provide a rare glimpse into the hidden reasoning processes of advanced language models — like a "microscope" for AI.

  • From Fire TV to Signage Stick: University of Utah's Digital Signage Evolution

    Jake Sorensen, who oversees sponsorship and advertising and Student Media in Auxiliary Business Development at the University of Utah, has navigated the digital signage landscape for nearly 15 years. He was managing hundreds of devices on campus that were incompatible with digital signage requirements and needed a solution that was reliable and lowered labor costs. The Amazon Signage Stick, specifically engineered for digital signage applications, gave him the stability and design functionality the University of Utah needed, along with the assurance of long-term support.

  • Stylized illustration showing cybersecurity elements like shields, padlocks, and secure cloud icons on a neutral, minimalist digital background

    Microsoft Announces Security Advancements

    Microsoft has announced major security advancements across its product portfolio and practices. The work is part of its Secure Future Initiative (SFI), a multiyear cybersecurity transformation the company calls the largest engineering project in company history.