Google Translate Update Reduces Errors Up to 85 Percent

Source: Google Research Blog.

Students who have taken or are taking foreign language courses and have used Google Translate may be familiar with the language conversion tool’s less than perfect translations. Yesterday, Google launched an updated system that utilizes state-of-the-art techniques to reduce translation errors by approximately 55-85 percent.

The newly launched Google Neural Machine Translation (GNMT) system delivers an “end-to-end approach for automated translation, with the potential to overcome many of the weaknesses of conventional phrase-based translation systems,” according to the GNMT technical report. Neural machine translation (NMT) systems, in brief, work because they consider the entire input sentence as a unit for translation. Unlike other NMT systems, however, which sometimes have trouble with rare words, GMNT provides a more accurate and speedy translation. The technology was deployed with help from TensorFlow, an open source machine learning toolkit, and Tensor Processing Units.

“Using human-rated side-by-side comparison as a metric, the GNMT system produces translations that are vastly improved compared to the previous phrase-based production system,” according to the Google Research Blog post announcing the update. “GNMT reduces translation errors by more than 55 percent-85 percent on several major language pairs measured on sampled sentences from Wikipedia and news websites with the help of bilingual human raters.”

For now, Google Translate will use the GNMT system for Chinese to English conversions only – assisting roughly 18 million translations per day worldwide – but the company plans to roll out GMNT to “many more” languages in the coming months.

To learn more, the full technical report is available on the Google Research Blog site.

About the Author

Sri Ravipati is Web producer for THE Journal and Campus Technology. She can be reached at [email protected].

Featured

  • From Fire TV to Signage Stick: University of Utah's Digital Signage Evolution

    Jake Sorensen, who oversees sponsorship and advertising and Student Media in Auxiliary Business Development at the University of Utah, has navigated the digital signage landscape for nearly 15 years. He was managing hundreds of devices on campus that were incompatible with digital signage requirements and needed a solution that was reliable and lowered labor costs. The Amazon Signage Stick, specifically engineered for digital signage applications, gave him the stability and design functionality the University of Utah needed, along with the assurance of long-term support.

  • Abstract geometric shapes including hexagons, circles, and triangles in blue, silver, and white

    Google Launches Its Most Advanced AI Model Yet

    Google has introduced Gemini 2.5 Pro Experimental, a new artificial intelligence model designed to reason through problems before delivering answers, a shift that marks a major leap in AI capability, according to the company.

  • Training the Next Generation of Space Cybersecurity Experts

    CT asked Scott Shackelford, Indiana University professor of law and director of the Ostrom Workshop Program on Cybersecurity and Internet Governance, about the possible emergence of space cybersecurity as a separate field that would support changing practices and foster future space cybersecurity leaders.

  • Two stylized glowing spheres with swirling particles and binary code are connected by light beams in a futuristic, gradient space

    New Boston-Based Research Center to Advance Quantum Computing with AI

    NVIDIA is establishing a research hub dedicated to advancing quantum computing through artificial intelligence (AI) and accelerated computing technologies.