Traditional Limits on Invisibility Cloak Disappear in U Texas Research

The creation of a real-life invisibility cloak just took another stride forward. Engineers at the University of Texas at Austin have come up with a design for a cloaking device that makes it "invisible" or undetectable to parts of the electromagnetic spectrum over a greater number of frequencies.

The new design uses "active" technology, which calls for drawing energy from a battery. The work is being led by Andrea Alù, an associate professor at the Cockrell School of Engineering. Alù and his team recently published a paper on the work in a December issue of Physical Review Letters.

Traditionally, the researchers have stated, cloaks have been designed using "passive" technology. Passively cloaked objects may become transparent, but if lit up with white light, which is composed of many colors, they become more visible with the cloak than without. This, the researchers explained, is a constraint imposed by Foster's theorem, which relates to the behavior of an electrical network when the electric current or voltage changes.

The U Texas research puts forth a design in which the proposed active cloak uses specialized materials, a battery, circuits and amplifiers to boost signals. According to the researchers, that approach allows for the cloak to be less discoverable across a broader set of frequencies.

"I believe that our design helps us understand the fundamental challenges of suppressing the scattering of various objects at multiple wavelengths and shows a realistic path to overcome them," noted Alù.

The team started with a passive "metasurface" made from an array of metal square patches and laden with amplifiers that use energy from a battery to broaden the bandwidth. Metamaterials were introduced to the creation of cloaking devices by a team of Duke University engineers in 2009.

"In our case, by introducing these suitable amplifiers along the cloaking surface, we can break the fundamental limits of passive cloaks and realize a 'non-Foster' surface reactance that decreases, rather than increases, with frequency, significantly broadening the bandwidth of operation," Alù said.

Eventually, the research team will go beyond theory to attempt to build a prototype cloak. They anticipate that the discoveries they make will have practical application in several areas, including sensing applications and wireless communications, in which they'll enable the suppression of interference from neighboring antennas.

About the Author

Dian Schaffhauser is a former senior contributing editor for 1105 Media's education publications THE Journal, Campus Technology and Spaces4Learning.

Featured

  • young man in a denim jacket scans his phone at a card reader outside a modern glass building

    Colleges Roll Out Mobile Credential Technology

    Allegion US has announced a partnership with Florida Institute of Technology (FIT) and Denison College, in conjunction with Transact + CBORD, to install mobile credential technologies campuswide. Implementing Mobile Student ID into Apple Wallet and Google Wallet will allow students access to campus facilities, amenities, and residence halls using just their phones.

  • lightbulb

    Call for Speakers Now Open for Tech Tactics in Education: Overcoming Roadblocks to Innovation

    The annual virtual conference from the producers of Campus Technology and THE Journal will return on September 25, 2025, with a focus on emerging trends in cybersecurity, data privacy, AI implementation, IT leadership, building resilience, and more.

  • illustration of a football stadium with helmet on the left and laptop with ed tech icons on the right

    The 2025 NFL Draft and Ed Tech Selection: A Strategic Parallel

    In the fast-evolving landscape of collegiate football, the NFL, and higher education, one might not immediately draw connections between the 2025 NFL Draft and the selection of proper educational technology for a college campus. However, upon closer examination, both processes share striking similarities: a rigorous assessment of needs, long-term strategic impact, talent or tool evaluation, financial considerations, and adaptability to a dynamic future.

  • DeepSeek on AWS

    AWS Offers DeepSeek-R1 as Fully Managed Serverless Model, Recommends Guardrails

    Amazon Web Services (AWS) has announced the availability of DeepSeek-R1 as a fully managed serverless AI model, enabling developers to build and deploy it without having to manage the underlying infrastructure.