Big Data Could Pose Unsustainable Challenges to Universities

Big data research operations in higher education could hit a wall. While universities are "meeting many current needs," according to a new research project, big data work is taxing institutional technology, human and financial resources. On many campuses, the infrastructure supporting big data is highly decentralized, running in individual labs, and dependent more on personal interactions than structured and coordinated programs. Considering the value of research for those schools, both financially and as a major ingredient of their brands, the stakes for creating sustainable research infrastructure and practices are high.

That's the conclusion of a new report from Ithaka S+R, which teamed up with librarians from 20 colleges and universities to understand how well schools can support their research efforts now and into the future. Participants interviewed more than 200 faculty members, exploring how researchers work with big data and identifying the challenges they faced.

According to "Big Data Infrastructure at the Crossroads: Support Needs and Challenges for Universities," the challenges are many:

  • There's a tension between disciplinary and interdisciplinary mentalities. While big data is primarily an interdisciplinary enterprise, "divergent incentive structures, cultures and unequal access to funding can affect disciplinary participation in big data research projects."
  • Managing complex data isn't easy. As the report noted, "the work of acquiring, cleaning, and organizing data is typically the most labor-intensive aspect of big data projects."
  • The structure for collaboration often emphasizes "local, lab-based" IT over the centralized IT operations.
  • There's confusion about sharing of data, both formal and informal.
  • The ethical aspects of big data research are still in flux, creating uncertainty about what the best practices are.
  • Researchers favor informal training for those involved in projects over "formal training in big data methods." That leaves "the potential for blind spots" in their research efforts.

The report also offered numerous recommendations useful to university research leaders, libraries, computing centers, IT and information professionals, faculty and staff who engage in big data research, along with the publishers, funders and others with stakes in research infrastructures.

For example, the authors suggested that institutions create protocols for regular assessment of on-campus big data infrastructure, including mapping resources and assembling working groups across IT, libraries, high-performance computing, research offices and other relevant divisions, "to coordinate support services, identify gaps and reduce redundancies." The report also suggested that universities produce a formal catalog of data services and resources for circulation to researchers.

Individual departments were encouraged to hire people who could be embedded into research teams, to provide data science, data management, statistical and computational expertise.

Libraries could create and update guides to datasets that would be of interest to their research communities, perhaps in collaboration with other academic libraries; and also host events for researchers, to enable them to share their work across fields.

"As big data grows, the difficulty of supporting the research mission of universities — already a substantial challenge for administrators — will increase," the authors noted in their conclusion. "Making big data sustainable, if that is possible (its carbon costs are daunting), will require coordinated action by universities, something that is difficult to accomplish at institutions with decentralized bureaucracies and cultures."

The report is openly available on the Ithaka S+R website.

About the Author

Dian Schaffhauser is a former senior contributing editor for 1105 Media's education publications THE Journal, Campus Technology and Spaces4Learning.

Featured

  • From Fire TV to Signage Stick: University of Utah's Digital Signage Evolution

    Jake Sorensen, who oversees sponsorship and advertising and Student Media in Auxiliary Business Development at the University of Utah, has navigated the digital signage landscape for nearly 15 years. He was managing hundreds of devices on campus that were incompatible with digital signage requirements and needed a solution that was reliable and lowered labor costs. The Amazon Signage Stick, specifically engineered for digital signage applications, gave him the stability and design functionality the University of Utah needed, along with the assurance of long-term support.

  • Abstract geometric shapes including hexagons, circles, and triangles in blue, silver, and white

    Google Launches Its Most Advanced AI Model Yet

    Google has introduced Gemini 2.5 Pro Experimental, a new artificial intelligence model designed to reason through problems before delivering answers, a shift that marks a major leap in AI capability, according to the company.

  • Training the Next Generation of Space Cybersecurity Experts

    CT asked Scott Shackelford, Indiana University professor of law and director of the Ostrom Workshop Program on Cybersecurity and Internet Governance, about the possible emergence of space cybersecurity as a separate field that would support changing practices and foster future space cybersecurity leaders.

  • Two stylized glowing spheres with swirling particles and binary code are connected by light beams in a futuristic, gradient space

    New Boston-Based Research Center to Advance Quantum Computing with AI

    NVIDIA is establishing a research hub dedicated to advancing quantum computing through artificial intelligence (AI) and accelerated computing technologies.