Researchers Provide Breakdown of Generative AI Misuse

In an effort to clarify the potential risks of GenAI and provide "a concrete understanding of how GenAI models are specifically exploited or abused in practice, including the tactics employed to inflict harm," a group of researchers from Google DeepMind, Jigsaw, and Google.org recently published a paper entitled, "Generative AI Misuse: A Taxonomy of Tactics and Insights from Real-World Data."

The authors of the paper, Nahema Marchal, Rachel Xu, Rasmi Elasmar, Iason Gabriel, Beth Goldberg, and William Isaac, emphasized that, as GenAI capabilities continue to advance, understanding the specific ways in which these tools are exploited is critical for developing effective safeguards. Their "taxonomy of GenAI misuse tactics" is meant to provide a framework for identifying and addressing the potential harms associated with these technologies, they wrote, ultimately aiming to ensure their responsible and ethical use.

The researchers based their study on the qualitative analysis of approximately 200 incidents reported between January 2023 and March 2024. That analysis revealed key patterns and motivations behind the misuse of GenAI, including:

  • Manipulation of human likeness. The most prevalent tactics involve the manipulation of human likeness, such as impersonation, "sockpuppeting," and "non-consensual intimate imagery."
  • Low-tech exploitation. Most misuse cases do not involve sophisticated technological attacks, but rather exploit easily accessible GenAI capabilities requiring minimal technical expertise.
  • Emergence of new forms of misuse. The availability and accessibility of GenAI tools have introduced new forms of misuse that, although not overtly malicious or policy-violative, have concerning ethical implications, such as blurring the lines between authenticity and deception in political outreach and self-promotion.

The study also identified two categories of misuse tactics:

Exploitation of GenAI Capabilities

  • Impersonation: Creating AI-generated audio or video to mimic real people.
  • Appropriated likeness: Using or altering a person's likeness without consent.
  • Sockpuppeting: Creating synthetic online personas.
  • NCII: Generating explicit content without consent.
  • Falsification: Fabricating evidence such as reports or documents.
  • IP infringement: Using someone’s intellectual property without permission.
  • Counterfeit: Producing items that imitate original works and pass as real.
  • Scaling and amplification: Automating and amplifying content distribution.
  • Targeting & personalization: Refining outputs for targeted attacks.

Compromise of GenAI Systems

  • Adversarial inputs: Modifying inputs to cause a model to malfunction.
  • Prompt injections: Manipulating text instructions to produce harmful outputs.
  • Jailbreaking: Bypassing model restrictions and safety filters.
  • Model diversion: Repurposing models for unintended uses.
  • Steganography: Hiding messages within model outputs.
  • Data poisoning: Corrupting training datasets to introduce vulnerabilities.
  • Privacy compromise: Revealing sensitive information from training data.
  • Data exfiltration: Illicitly obtaining training data.
  • Model extraction: Stealing model architecture and parameters.

The paper provides insights for policymakers, trust and safety teams, and researchers to help them develop strategies for AI governance and mitigate real-world harms, the authors wrote. In order to protect against the diverse and growing threats posed by GenAI, they called for better technical safeguards, non-technical user-facing interventions, and ongoing monitoring of the evolving misuse landscape.

About the Author

John K. Waters is the editor in chief of a number of Converge360.com sites, with a focus on high-end development, AI and future tech. He's been writing about cutting-edge technologies and culture of Silicon Valley for more than two decades, and he's written more than a dozen books. He also co-scripted the documentary film Silicon Valley: A 100 Year Renaissance, which aired on PBS.  He can be reached at [email protected].

Featured

  • interconnected glowing nodes and circuits in blue and green, forming a neural network on a dark background with a futuristic design

    Tech Giants Launch $100 Billion AI Infrastructure Network Project

    OpenAI, SoftBank, and Oracle have unveiled a new venture, Stargate, through which they aim to build a massive AI infrastructure network across the United States. The initiative, which was announced at the White House with President Donald Trump, has been described as the "largest AI infrastructure project in history."

  • glowing crystal ball with a simplified university building inside, surrounded by seamlessly blended holographic symbols of binary code, a bar graph, database icons, and a cloud, against a gradient blue and white background with softly merging circuit patterns

    3 Areas Where AI Will Impact Higher Ed Most in 2025

    What should colleges and universities expect from the evolving landscape of artificial intelligence in the coming year? Here's what the experts told us.

  • glowing video screen with a play button, next to a floating holographic paper transcript displaying faint digital text

    3Play Media Launches AI-Enabled Accessibility Tools

    Accessibility provider 3Play Media has introduced new AI-enabled video accessibility solutions designed to help colleges and universities meet ADA Title II compliance regulations.

  • Two figures, one male and one female, stand beside a transparent digital interface displaying AI symbols like neural networks, code, and a shield, against a clean blue gradient background.

    Report Makes Business Case for Responsible AI

    A new report commissioned by Microsoft and published last month by research firm IDC notes that 91% of organizations use AI tech and expect more than a 24% improvement in customer experience, business resilience, sustainability, and operational efficiency due to AI in 2024.